58 research outputs found

    Geologic studies of Yellowstone National Park imagery using an electronic image enhancement system

    Get PDF
    The image enhancement system is described, as well as the kinds of enhancement attained. Results were obtained from various kinds of remote sensing imagery (mainly black and white multiband, color, color infrared, thermal infrared, and side-looking K-band radar) of parts of Yellowstone National Park. Possible additional fields of application of these techniques are considered

    Geological Evaluation of Infrared Imagery, Eastern Part of Yellowstone National Park, Wyoming and Montana

    Get PDF
    Geological evaluation of infrared imagery of Yellowstone National Park to determine if rock and soil types, structures, and thermal springs can be identifie

    Automatic Computer Mapping of Terrain

    Get PDF
    Computer processing of 17 wavelength bands of visible, reflective infrared, and thermal infrared scanner spectrometer data, and of three wavelength bands derived from color aerial film has resulted in successful automatic computer mapping of eight or more terrain classes in a Yellowstone National Park test site. The tests involved: (1) supervised and non-supervised computer programs; (2) special preprocessing of the scanner data to reduce computer processing time and cost, and improve the accuracy; and (3) studies of the effectiveness of the proposed Earth Resources Technology Satellite (ERTS) data channels in the automatic mapping of the same terrain, based on simulations, using the same set of scanner data. The following terrain classes have been mapped with greater than 80 percent accuracy in a 12-square-mile area with 1,800 feet of relief; (1) bedrock exposures, (2) vegetated rock rubble, (3) talus, (4) glacial kame meadow, (5) glacial till meadow, (6) forest, (7) bog, and (8) water. In addition, shadows of clouds and cliffs are depicted, but were greatly reduced by using preprocessing techniques

    Skylab-EREP studies in computer mapping of terrain in the Cripple Creek-Canon City area of Colorado

    Get PDF
    Multispectral-scanner data from satellites are used as input to computers for automatically mapping terrain classes of ground cover. Some major problems faced in this remote-sensing task include: (1) the effect of mixtures of classes and, primarily because of mixtures, the problem of what constitutes accurate control data, and (2) effects of the atmosphere on spectral responses. The fundamental principles of these problems are presented along with results of studies of them for a test site of Colorado, using LANDSAT-1 data

    Proposal for a study of computer mapping of terrain using multispectral data from ERTS-A for the Yellowstone National Park test site

    Get PDF
    The author has identified the following significant results. A terrain map of Yellowstone National Park showed plant community types and other classes of ground cover in what is basically a wild land. The map comprised 12 classes, six of which were mapped with accuracies of 70 to 95%. The remaining six classes had spectral reflectances that overlapped appreciably, and hence, those were mapped less accurately. Techniques were devised for quantitatively comparing the recognition map of the park with control data acquired from ground inspection and from analysis of sidelooking radar images, a thermal IR mosaic, and IR aerial photos of several scales. Quantitative analyses were made in ten 40 sq km test areas. Comparison mechanics were performed by computer with the final results displayed on line printer output. Forested areas were mapped by computer using ERTS data for less than 1/4 the cost of the conventional forest mapping technique for topographic base maps

    Early Inception of the Laramide Orogeny in Southwestern Montana and Northern Wyoming: Implications for Models of Flat‐Slab Subduction

    Get PDF
    Timing and distribution of magmatism, deformation, exhumation, and basin development have been used to reconstruct the history of Laramide flat-slab subduction under North America during Late Cretaceous-early Cenozoic time. Existing geodynamic models, however, ignore a large (40,000-km(2)) sector of the Laramide foreland in southwestern Montana. The Montana Laramide ranges consist of Archean basement arches (fault-propagation folds) that were elevated by thrust and reverse faults. We present new thermochronological and geochronological data from six Laramide ranges in southwestern Montana (the Beartooth, Gravelly, Ruby and Madison Ranges, and the Tobacco Root and Highland Mountains) that show significant cooling and exhumation during the Early to mid-Cretaceous, much earlier than the record of Laramide exhumation in Wyoming. These data suggest that Laramide-style deformation-driven exhumation slightly predates the eastward sweep of magmatism in western Montana, consistent with geodynamic models involving initial strain propagation into North American cratonic rocks due to stresses associated with a northeastward expanding region of flat-slab subduction. Our results also indicate various degrees of Cenozoic heating and cooling possibly associated with westward rollback of the subducting Farallon slab, followed by Basin-and-Range extension. Plain Language Summary The Laramide region in the western U.S. is characterized by some of the highest topography in North America including the Wind River Range in WY and the Beartooth Range of WY and Montana. These ranges have fed detritus to surrounding basins for millions of years and contributed to modern ecosystems. These high topographic features and basins have significantly impacted paleoenvironmental conditions over geological time. The formation of these high-relief ranges has been linked to deep Earth, geodynamic, processes involving subduction of a flat slab under the North American Plate. Models of flat-slab subduction rely on the timing and pattern of deformation and exhumation of Laramide ranges, which remains poorly understood. Our study provides new data on the timing of deformation and exhumation of Laramide ranges in SW Montana and northern WY capable of testing current models of flat-slab subduction.NSF-Tectonics [EAR-1524151]6 month embargo; published online: 9 January 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore